
Pixhawk Pilot Support Package (PSP)
User Guide

Version 3.04

 ISSUE DATE: June 2018

 MathWorks

Pilot Engineering Group

1 Introduction ... 4
1.1 Basic Software Environment Description .. 4
1.2 Acronyms/Definitions .. 5
1.3 Contact Information ... 5

2 System Requirements.. 5
2.1 MATLAB/Simulink Toolboxes ... 5
2.2 Required (Windows) .. 5
2.3 Required (Linux) .. 6

3 Installation... 6
3.1 Windows – Ubuntu Bash Setup Dependencies .. 6
3.1 Linux – Setting up Dependencies... 6
3.1 Pilot Support Package setup (Windows & Linux) ... 7

4 Getting Started .. 9
4.1 Pixhawk Environment .. 9
4.2 Firmware Startup Preparation .. 11
4.3 Simulink Code Generation and Compilation ... 12

 Simulink Settings .. 12
 Target Hardware Resource Options .. 14
 Building the Firmware .. 16

4.3.3.1 Build, Download and Run (Linux) .. 16
NOTE: please ensure putty or any connection to the Nutshell terminal is closed before
attempting an upload! ... 16

4.3.3.2 Build Only and Manual Download (Windows) 17
NOTE: please ensure putty or any connection to the Nutshell terminal is closed before
attempting an upload! ... 17

 Starting the PX4 Simulink Application .. 18
 Firmware and Code Generation structure ... 18
 Hard Real-Time Constraints ... 20

4.4 Using QGroundControl with Pixhawk PSP for sensor calibration 21
4.5 Simulink Block Library .. 23
4.6 Example Models ... 24

 px4demo_Parameter_CSC_example.slx ... 29
 px4demo_ADC_example.slx .. 24
 px4demo_input_rc.slx ... 25
 px4demo_rgbled.slx .. 25
 px4demo_tune.slx ... 26
 px4demo_gps.slx .. 26
 px4demo_attitude_plant.slx .. 27
 px4demo_attitude_control.slx ... 27
 px4demo_attitude_system.slx ... 28

 px4demo_fcn_call_uorb_example.slx Error! Bookmark not defined.
 px4demo_write_uorb_example.slx ... 30
 Serial Communication .. 31
 QGroundControl Demos – Parameter Tuning and Messages 32

5 Building your own custom Simulink Block.. 37
 S-Function Approach .. 37

 MATLAB Function blocks and System Objects .. 37
6 Limitations .. 38

 Support for HIL / Mavlink .. 38
 Supporting C++ uORB Message Data Structures 38

7 Updating to a new version of Pixhawk PSP ... 40

1 Introduction

The Pixhawk Pilot Support Package (PSP) feature allows users to use Simulink models to generate
code targeted for platforms which run the PX4 flight stack. Originally this was targeted for the
Pixhawk FMUv2 but has now been made expandable to other boards which run the PX4 software
environment.

The PSP provides the ability to build and download to a PX4 board unit. It does not provide exact
function behavior blocks for other services running on the Pixhawk (e.g. Attitude Estimation using
EFK or SOF). The user will need to use blocks from the base Simulink or possibly the Aerospace
blockset for simulating their flight control system model. Once the flight control system (FCS) has
been successfully modeled, simulated and verified, the Pixhawk Target can be used to deploy the
control system onto the PX4 hardware.

The Pixhawk Simulink blocks allows users to access sensor data and other calculations available
to be used in their Simulink model at runtime. Generated code can then be compiled using the
PX4 CMake build system.

For windows users:
This package formerly required the Windows PX4 Toolchain Installer v1.4 but since this is no longer
maintained by the PX4 developers, this package now uses a different method for cross-compilation.
Please see the instructions on more information.

1.1 Basic Software Environment Description

The Pixhawk Pilot Support Package is based off a forked version of the official Pixhawk
Firmware. This forked version can be found here.
https://github.com/mathworks/PX4-Firmware/tree/PixhawkPSP_v3.0.3

During the PSP installation process, a download script will automatically clone this repository.
This forked version is roughly based off of the 1.6.5 tag
https://github.com/PX4/Firmware/releases/tag/v1.6.5

A NuttX application called “px4_simulink_app” is created using this PSP and code generation
tools. This application follows the same code structure and format depicted here.
http://dev.px4.io/tutorial-hello-sky.html

This Pilot Support Package has been tested with the Pixhawk (px4fmu-v2) and the Pixhawk
Mini (px4fmu-v3) which can be configured to run different CMake configurations through the
installation process. We have tested the “default” configuration but we also allow you to specify
your own custom CMake configuration.

Please ensure that you select the correct CMake option which matches the board you are
targeting:
https://dev.px4.io/en/setup/building_px4.html
For example:
Pixhawk 1: make px4fmu-v2_default
Pixhawk Mini: make px4fmu-v3_default

Since this package is generating code for a Simulink PX4 module, our PSP adapts the Simulink
code generation and compilation process to fit into the Pixhawk build environment by making

use of CMake. A CMake command is executed compile the Pixhawk Firmware to invoke
compilation.

Ideally, one should be familiar with the embedded software environment of the PX4 platform
prior to using this Pilot Support Package. For more information on this, refer to the later sections
that go into details about the code generation process as well as the PSP installation section.

1.2 Acronyms/Definitions
Pixhawk (PX4) – the Flight Controller Unit providing various sensor value inputs and PWM
outputs as well as an ARM Cortex-M4 microprocessor for flight control and management.
PSP – Pilot Support Package. MathWorks software offering customized feature development
or updates that are not yet available in the officially released version of MATLAB/Simulink.
TLC – Target Language Compiler
BTI – Built Tool Integration
FMU – Flight Management Unit
PWM – Pulse Width Modulation
RC – Radio Control
Tx/Rx – Transmitter/Receiver
ESC – Electronic Speed Controller
NED – North-East-Down

1.3 Contact Information
Please contact < > for questions on the PX4 Pilot Support Package

2 System Requirements
2.1 MATLAB/Simulink Toolboxes
To generate code from a Simulink model, the following products are needed:
• MATLAB R2017a / R2017b

o Note: This Pilot Support Package has not been tested on R2018a
• Simulink
• Simulink Coder
• Embedded Coder
• Aerospace Blockset is needed for some of the example models
• Instrument Control Toolbox is needed for some data acquisition examples

2.2 Required (Windows)
To successfully work with the PX4 and deploy the generated firmware to the Pixhawk this
additional software is needed. Windows 10 is required for the Pixhawk PSP and the Ubuntu
bash terminal setup correctly. Please follow the instructions from Microsoft on how to
configure this
https://docs.microsoft.com/en-us/windows/wsl/about

Once this has been done, the next step is to install the necessary PX4 dependencies
(Cmake, python, cross-compilers) for the Windows-Ubuntu bash environment. A shell script
has been provided to download and set this up.

2.3 Required (Linux)
• arm-none-eabi-gcc (GNU Tools for ARM Embedded Processors) 5.4
• Python
• CMake (tested with 3.5.1)

NOTE (Linux): Compilation of the firmware can actually fail on newer versions of the arm-
none-eabi-gcc. All tests with the Pixhawk PSP were conducted on version arm-gcc 5.4

A shell script has been provided to download the necessary PX4 dependencies. More detail
on this will be provided below.

3 Installation
This PSP is supported on Win64 and Linux platforms. By running the MLTBX installer it will
copy/paste files to your MATLAB Add-ons folder which you configure under your MATLAB
preferences.

In the above add-ons location, the PSP will be installed in C:\Matlab_Addons\PX4PSP\code\

3.1 Windows – Ubuntu Bash Setup Dependencies

NOTE: This section assumes you have NOT setup your Ubuntu bash for Windows with the
necessary PX4 build environment dependencies

After you have setup and installed the Ubuntu-Linux bash shell, the next step is to setup this bash
terminal with the correct cross-compiler and other dependencies. A script has been provided in
<Location of installed PSP>\PX4PSP\code\px4\Win10bash_shell_setup\windows_bash_nuttx.sh

This script was originally based off a script provided by the PX4 developers:
https://dev.px4.io/en/setup/dev_env_windows.html

The only major difference between the above script and what is provided is that we omitted the
downloading of the PX4 Firmware. This is done at a different step.

3.1 Linux – Setting up Dependencies

NOTE: This section assumes you have NOT setup your Linux with the necessary PX4 build
environment dependencies.

1) Install gcc-arm-none-eabi 5.4. There are numerous ways to do this - here is one approach

which uses the exact same tool-chain used in the Windows 10 Bash

wget https://github.com/SolinGuo/arm-none-eabi-bash-on-win10-/raw/master/gcc-arm-none-
eabi-5_4-2017q2-20170512-linux.tar.bz2
tar -jxf gcc-arm-none-eabi-5_4-2017q2-20170512-linux.tar.bz2

exportline="export PATH=$HOME/gcc-arm-none-eabi-5_4-2017q2/bin:\$PATH"
if grep -Fxq "$exportline" ~/.bashrc; then echo " GCC path already set." ; else echo
$exportline >> ~/.bashrc; fi
. ~/.bashrc

2) Run install shell script to setup build tools, CMAKE, python, other dependencies

The ‘ubuntu_sim_common_deps.bash’ script does this for you. This is originally based on the
bash script provided here:
https://raw.githubusercontent.com/PX4/Devguide/master/build_scripts/ubuntu_sim_common_deps.sh

You can find this file in
<Location of installed PSP>\PX4PSP\code\px4\Linux_setup\ubuntu_sim_common_deps.bash

3.1 Pilot Support Package setup (Windows & Linux)

Next, you want to run the following command in MATLAB

PixhawkPSP('<Location of Firmware>')

Where <Location of Firmare> represents the folder path of where the PX4 firmware will
be. Note that this folder must exist – you can select a folder with existing firmware so long as that
firmware originated from
https://github.com/mathworks/PX4-Firmware/tree/PixhawkPSP_v3.0.3

A user-interface menu will now appear

There are several steps to follow here:

Setup Path (Windows Only)
This will setup the location is only specific to Windows. It is used to configure the path to Python
and the Ubuntu-Bash for Windows terminal.

NOTE: If you experience build errors in Simulink such as this:

If you get the above error you may need to use “Sysnative” rather than “System32” which can be
specified in the “Windows 10 bash” text field.

Download Firmware
The PX4 firmware which is forked on the MathWorks GitHub will be cloned to the string
argument you passed in to the ‘PixhawkPSP’ function. The other option is to manually
clone the firmware with git commands and then point to the parent folder where the firmware
exists using the PixhawkPSP('<folder location command>').

This command will open up a Windows 10 bash terminal and run a git clone firmware
command. You can use the Validate Firmware button to confirm that the firmware which was
cloned contains the PX4 Simulink module

Cmake Configuration

Next, select the CMAKE firmware. If you're targeting the Pixhawk Mini and the Pixhawk 2.1
Cube, we’ll want to select v3. If you plan to target other PX4 platforms, you can click on the
"custom" option and enter in the name of the make-file. Note that you will need to make the
necessary modifications to the CMAKE / src files to add the PX4 Simulink App. To see which
make file corresponds to the correct hardware platform, please see
https://dev.px4.io/en/setup/building_px4.html

So for instance, if you wanted to support Pixhawk 3 Pro you would use the “specify”
checkbox and then type
“px4fmu-v4pro_default”

Build Firmware
Next, build the firmware. This is a step will build most of the firmware such that when it comes
to compiling the generated code the time taken on the first build will not build from the very
beginning. Building the firmware will also create some necessary files for various header files
needed by the build process.

On Windows this may take several minutes.

4 Getting Started
4.1 PX4 Environment
Using the default firmware available for the PX4, you should test to make sure your hardware
is correctly configured and works as intended. This includes the correct motor wiring,
placement of the PX4 module and any other sensors you may be using. You can use
QGroundControl to download and flash the necessary firmware for this test.

You can launch a serial terminal program like TerraTerm or PuTTY and connect to the PX4
and manually run the built-in commands using the nuttx shell. NuttX is the OS that is
delivered with the Pixhawk toolchain and will be used for running the code generated from
your Simulink models.

You can find out which “Builtin” Apps your firmware has by typing “?” at the nuttx shell prompt
“nsh>”

nsh> ?
help usage: help [-v] [<cmd>]
 df kill mkrd rm unset ? echo losetup mh rmdir usleep

cat exec ls mount set xd cd exit mb mv sh cp free
mkdir mw sleep cmp help mkfatfs ps test dd hexdump
mkfifo pwd umount

Builtin Apps:
 sercon
 serdis
 adc
 attitude_estimator_ekf
 bl_update
 blinkm
 boardinfo
 commander

…

Some useful commands are:
1) esc_calib – to calibrate your ESCs through the command line interface

usage:
 [-d <device>] PWM output device (defaults to

/dev/pwm_output)
 [-l <pwm>] Low PWM value in us (default: 1000us)
 [-h <pwm>] High PWM value in us (default: 2000us)
 [-c <channels>] Supply channels (e.g. 1234)
 [-m <chanmask>] Directly supply channel mask (e.g. 0xF)
 [-a] Use all outputs

2) pwm – to test out your PWM outputs

usage:
pwm arm|disarm|rate|failsafe|disarmed|min|max|test|info ...

 arm Arm output
 disarm Disarm output

 rate ... Configure PWM rates
 [-g <channel group>] Channel group that should

update at the alternate rate
 [-m <chanmask>] Directly supply channel mask
 [-a] Configure all outputs
 -r <alt_rate> PWM rate (50 to 400 Hz)

 failsafe ... Configure failsafe PWM values
 disarmed ... Configure disarmed PWM values
 min ... Configure minimum PWM values

 max ... Configure maximum PWM values
 [-c <channels>] Supply channels (e.g. 1234)
 [-m <chanmask>] Directly supply channel mask

 (e.g. 0xF)
 [-a] Configure all outputs
 -p <pwm value> PWM value

 test ... Directly set PWM values
 [-c <channels>] Supply channels (e.g. 1234)
 [-m <chanmask>] Directly supply channel mask

 (e.g. 0xF)
 [-a] Configure all outputs
 -p <pwm value> PWM value

 info Print information about the PWM device

 -v Print verbose information
 -d <device> PWM output device (defaults to /dev/pwm_output)

3) tests – run various built-in test on the pixhawk hardware

nsh> tests help
Available tests:
 led
 int
 float
 sensors
 gpio
 hrt
 ppm
 servo
 ppm_loopback
 adc
 jig_voltages
 uart_loopback
 uart_baudchange
 uart_send
 uart_console
 hott_telemetry
 tone
 sleep
 time
 perf
 all
 jig
 param
 bson
 file
 file2
 mixer
 rc
 conv
 mount
 mtd
 mathlib
 help

4) top – will list all the NuttX processes running at the time (press ‘q’ to quit)

Processes: 11 total, 2 running, 9 sleeping
CPU usage: 37.36% tasks, 0.48% sched, 62.16% idle
Uptime: 904.233s total, 561.039s idle

 PID COMMAND CPU(ms) CPU(%) USED/STACK PRIO(BASE) STATE
 0 Idle Task 561039 62.162 0/ 0 0 (0) READY
 1 hpwork 26060 2.799 748/ 1992 192 (192) w:sig
 2 lpwork 6784 0.675 628/ 1992 50 (50) READY
 85 top 116 1.158 1244/ 1696 100 (100) RUN
 7 nshterm 121 0.000 884/ 1192 100 (100) w:sem
 9 px4io 9444 0.965 796/ 1992 240 (240) w:sem
 26 sensors_task 38995 4.440 1364/ 1992 250 (250) w:sem

 38 px4SimTermTask 1 0.000 524/ 2040 100 (100) w:sem
 29 attitude_estimator_ekf 191254 20.945 13004/13992 250 (250) w:sem
 40 px4SimBaseTask 49428 5.501 1164/ 2552 100 (100) w:sem
 42 px4SimSchedTask 7819 0.868 1028/ 2040 100 (100) READY

5) SD card logging – useful for logging data to the SD Card

sdlog2: usage: sdlog2 {start|stop|status} [-r <log rate>] [-b <buffer size>] -e -
a -t -x
 -r Log rate in Hz, 0 means unlimited rate
 -b Log buffer size in KiB, default is 8
 -e Enable logging by default (if not, can be started by command)
 -a Log only when armed (can be still overriden by command)
 -t Use date/time for naming log directories and files
 -x Extended logging

4.2 Firmware Startup Preparation
Executing the default firmware, there are several processes that get executed at system
startup. When deploying a custom flight control system you will need to suppress the
execution of these processes and instead, run the application generated by Simulink. This is
done by a start-up script put on the micro-SD card used on the PX4. In this way you can
control which flight control software you want to run just by changing the contents of this
script.

The script’s filename is rc.txt. It should be copied to the SD-card directory /etc. A script
sample has been provided by the PSP installation and can be found in your Pixhawk
Toolchain installation directory: <Selected Firmware Location>\example_rctxt\rc.txt. By
copying this file to your SD-card in the folder /etc the Pixhawk will execute the
px4_simulink_app at system startup. This app is built into the firmware that is flashed onto
your PX4 hardware at Simulink Model build time. Simply renaming this file (e.g. rc.txt to
rc.txt.simulink) on the SD-card will allow boot-up of the default flight control software.

NOTE: Newer release of the Pixhawk firmware has changed how the boot-up tone is played
by moving it to the ‘commander’ application. Because we are not using the commander
application and instead running our own boot sequence from the SD card, you will not hear
the boot-up sound. You can manually add a tone alarm sequence in the rc.txt file to indicate
successful boot-up.

More information can be found on the Pixhawk website
https://dev.px4.io/en/advanced/system_startup.html

The Pixhawk firmware relies on a publisher-subscriber communication architecture for Inter-
Process communication on the PX4. This mechanism is implemented by the uORB or micro-
Object-Request-Broker application. It provides the infrastructure that allows threads and
applications to share data between each other. Data is exchanged between participants in
what is known as “topics”. Any task can register themselves as a publisher or subscriber of a
particular topic. Topic information is exchanged in defined common “C” structures.

More information on uORB can be found here: https://dev.px4.io/en/middleware/uorb.html

In order for the firmware to properly function, the uorb task must be executed upon startup
(uorb start). Many of the Simulink Blocks that generate code interacting with the PX4
hardware rely on the uORB mechanism.

The next section will talk more about how the Pixhawk Pilot Support Package creates the
px4_simulink_app application from generated code.

4.3 Simulink Code Generation and Compilation

The Pixhawk target uses MathWorks Build Tool Integration (BTI) to allow MATLAB to invoke
the ARM-GCC compiler to build px4_simulink_app. The system target file needs to be ert.tlc
(Embedded Real-Time) which is available with Embedded Coder. The user is then able to
choose the hardware and toolchain. If the target hardware is set to ‘Pixhawk’, then the
appropriate toolchain (Pixhawk) will be chosen automatically.

The Pixhawk firmware now uses a CMake build process. We have adapted the PSP to take
advantage of this. This is separated into different parts:

1) Code generation of Simulink Model
2) Transfer generated code to \px4\Firmware\src\modules\px4_simulink_app along with a

CMakelist.txt which describes the necessary source files, include paths and compiler
options inherited from Build Tool Integration.

3) Invoke CMake commands to build the entire firmware. Since we already built most of the
Firmware this process should advance more quickly than building it for the first time. The
only difference being that CMake will now integrate our newly added Simulink generated
code for px4_simulink_app. If you are on a Windows 10 machine this part is done within
a Ubuntu bash terminal

4) The firmware image (*.px4 file) will be compiled and placed here
\px4\Firmware\build_<firmware type>\

5) If the download option was also selected, user will be prompted to plug in the Pixhawk
FMU to upload the firmware. Note that this is only available in Linux. In Windows, you will
need to invoke the Firmware download manually.

 Simulink Settings
For the model to target the PX4 hardware, the Simulink model must be configured to use the
appropriate code generation options. Go to the Hardware Implementation page and select
Pixhawk PX4 to do this. Note that in previous releases this selection was done in the Code
Generation panel, but nowit has moved into Hardware Implementation. The code generation
panel should automatically update the labeled items one through four (1-4) to select the
correct compiler and build configurations.

There are a few other settings which are required for this version of the PSP. These are:
1) Solver Type should be set for Fixed-Step (for embedded code generation)
2) Model Optimization Option Inline Params must be 'on' for Pixhawk code generation

Inline parameters setting is highly recommended due to the limited resources in global
memory and constraints on the Pixhawk target. Inline parameters places all model
parameters (ie: gains) as “inline” constants or variables on the function stack rather. You
will receive an error if this setting is not adjusted in your model.

 Target Hardware Resource Options

 Under the Hardware Implementation pane there are several Target Hardware Resource
Options. These are explained in detail below.

1) Base rate task priority:
 When the generated code begins executing, several threads are spawned,

one being the base-rate thread which runs at the model’s base sample rate.
The priority of this thread can be adjusted if needed.

2) Build Options:
 Build – selecting this will just build the Pixhawk firmware image in

/px4/Firmware/Build/ but not actually upload it to the Pixhawk FMU
 Build, load and run – this will build and upload to the Pixhawk FMU. How it

decides to upload is dictated by the “Uploading Options” . Note that in
Windows this option does nothing

3) Clocking: Currently not modifiable. Typically, this parameter is utilized by Processor-
in-the-Loop. This feature is currently not implemented in the Pixhawk PSP

4) External Mode Options – Please see the external mode chapter documentation.
These options configure which serial port settings to use to setup external mode
communication.

5) Uploading Options (Windows Only) – For uploading to the Pixhawk FMU, we can

either force it to connect to a port manually or we can tell MATLAB to search for the
correct COM port and connect automatically. Once MATLAB determines the COM
port it will continue using it without having to search again or until the COM port value
changes for connecting to the PX4 FMU.

 Building the Firmware

The firmware for model can be generated by pressing the ‘Build’ icon on the toolbar:

The firmware will then start to build, starting with the generated code then along with the
rest of the Pixhawk Firmware using CMake. In Windows 10, the bash terminal will open
shortly and begin cross compilation. In Linux, the build will occur within
MATLAB/Simulink.

4.3.3.1 Build, Download and Run (Linux)
NOTE: please ensure putty or any connection to the Nutshell terminal is closed before
attempting an upload!

If the “Build, Download and Run” option was selected in the hardware implementation
panel then the next chain of events will occur after the build process is completed:

The Diagnostic Window will show the progress of the build process. When the firmware
is ready and the ‘Build, Load, Run” option is selected, the user will be promoted to make
sure that the pixhawk is NOT currently plugged into the computer USB port (see pop-up
dialog below). Press OK on this pop-up dialog, then plug in the pixhawk into the USB
port. This will start the flashing process. When the process is complete, the PX4 will re-
boot and you should hear the start-up tune.

A successful upload using the “Build, Load and Run” option looks something like this in
the Simulink Diagnostic Viewer

4.3.3.2 Build Only and Manual Download (Windows)
NOTE: please ensure putty or any connection to the Nutshell terminal is closed before
attempting an upload!

The build button will open a bash terminal. Wait for the compilation to reach 100%.

To upload the firmware, is found under the Code menu > PX4 PSP: Upload code to
Px4FMU. Ensure that the PX4 device is plugged in during this time.

 Starting the PX4 Simulink Application
To start the application you can call the command
px4_simulink_app start
If you have modified your rc.txt file you can automatically start the generated application
as soon as the board powers up. The app can be stopped using
px4_simulink_app stop

[px4_simulink_app] usage: px4_simulink_app {start|stop|status} [-p <additional params>]

 Firmware and Code Generation structure
The Pixhawk PSP generates source code from the model, creates a binary which is then
added as a built-in command in the NuttX OS running on the pixhawk. The built-in
command is called px4_simulink_app and it has a command line interface to control its
start and stop condition. This application should be included as part of the boot-up script.

During execution the px4_simulink_app will spawn a task called “PX4_Simulink
_Tasks”. When the application initializes it spawns a task which is used to spawn several
threads. These threads are the following: base rate thread, subrate thread, a scheduler
thread or a terminate thread. The number of subrate threads are dictated by the number
of sample-times you have in the model and if the model is set to multi-tasking.

When the application has ended these threads will terminate along with the
“PX4_Simulink _Tasks”.

The source file nuttxinitialize.c and PX4_TaskControl.c is responsible for spawning these
threads, semaphores and so forth to execute the generated code at the specified sample
rates in the Simulink model. This source file can be found in \psp\pixhawk\src

In the previous versions of the Pixhawk PSP we would spawn a thread called
schedlerTask which would setup a semaphore that waits on a POSIX timer using
functions such as timer_create. Using this method, it was observed that there was jitter in
the pace of execution. While this jitter was not enough to cause instability in the system, it
was enough to warrant an update. We now employ a High-Resolution Timer (HRT) which
was observed to have less jitter to post the base-rate semaphore which is used to set the
execution pace of the base-rate thread. To read more about this go here:

https://pixhawk.org/dev/accurately_timed_operations

 Hard Real-Time Constraints
It is highly recommended to NOT use this during flight tests as there is a chance the system
will auto-shut down in midflight.

In the R2016a/R2016b PSP release, a new feature has been added in here to allow users to
determine if the flight algorithm is able to meet scheduling deadlines by examining task over-
run occurrences. By definition, task over-run means that the generated code was not able to
complete a call complete it’s task in the specified sample time set by the Simulink model. This
is illustrated below:

When enabling Hard Real-Time constraints, the generated code will auto-shut down and
report to the Nuttshell terminal when task over-run crosses a certain threshold.

This threshold is dictated by the semaphore water-mark. In the above settings, we allow task
over-run to occur at a maximum of 20 times before the application shuts down. The water-
mark is here to account for more flexibility in instances where model initialization may have
taken longer than a single sample period and causes brief semaphore wind-up but the
generated code step function is still able to meet the scheduling deadline.

General use-cases for this feature include:

• Use this to help determine if your flight algorithm does not perform in real time and be

able to quantify the severity
• It is highly recommended to NOT use this during flight tests as there is a chance the

system will auto-shut down in midflight. You will be warned prior to compiling the Simulink
model that this option has been enabled

• Useful for observe transient semaphore wind-up due to initialization

• This is only used to measure against the base (ie: fastest) sample-rate. As such, you may
want to use this option with a simplified model with a single-rate that you plan to run that
section of the algorithm on. With this option enabled, examine ‘baseRateTask(void *arg)
to see the instrumentation code we introduce to measure for overrun.

Tips for running at faster periods in real-time include:

• Run with ‘faster runs’ configuration (-o3 optimizations)
• Reduce the complexity in the model
• Think of better ways of partitioning the model to different sample-rates – this will split the

model into different threads. For instance, try moving a section of the model which does
not need to run as fast as the base-sample rate into a slower sample rate. This will make
that part of the model run less frequently and places it in a lower priority thread

• Use fixed-point instead of floating point math if necessary to ease computational
complexity

4.4 Using QGroundControl with Pixhawk PSP for sensor calibration

QGroundControl is a utility which can interact with your Pixhawk FMU through calibration
routines, mission planning and parameter adjustments. This utility uses Mavlink serial
connection to communicate back to the host computer. For more information on
QGroundControl please refer to their website:
http://qgroundcontrol.com/

QGroundControl has had many different releases which may or may not work with the
Pixhawk PSP. When running px4_simulink_app we recommend disabling several
applications such as the commander and mavlink. This is done because

• We currently do not generate code to interact with Mavlink. We also sometimes require

the serial port to be free to access for other things (ie: generic UART communication)

• The commander application has full control over the motors/actuators. Because
px4_simulink_app was intended to replace the commander application as the main flight
controls system, we disable this app. This unfortunately means that QGroundControl
cannot be used simultaneously while px4_simulink_app is running if the commander
application is disabled.

The QGroundControl calibration procedure calculates sensor offset and compensation
needed for stable flight orientation. These parameters are stored in /fs/mtd_params which is
persistent readable/writable memory. To learn more about reading/writing parameters please
see http://dev.px4.io/advanced-configurations.html

If you wish run through a calibration routine with QGroundControl, you can follow these steps.

 Step 1: Remove the SD card and start the FMU
By removing the SD card we force the FMU to load the default applications such as
commander/navigator/Mavlink, etc. This will allow you to use QGroundControl to connect to it
in a later step.

Step 2: Start Calibration Routine in QGroundControl
You should now be able to connect to the FMU with QGroundControl and begin the
calibration routine as described here:
https://donlakeflyer.gitbooks.io/qgroundcontrol-user-guide/content/SetupView/Sensors.html

Step 3: Examine Parameters
The calibration routine will update several parameters which will be needed by the attitude
estimation / sensor system on the Pixhawk

Step 4: Access Parameters in Simulink
These parameters are also accessible in Simulink generated application px4_simulink_app
using the Custom Storage Class (CSC) method in one of our example models. Reboot your
Pixhawk FMU after the above calibration step with the modified rc.txt file via SD card insertion.
Here is a snap-shot of this example model running in external mode where we display several
parameters from the above list.

Please examine some of the example models such as px4demo_Parameter_CSC_example.slx

4.5 Simulink Block Library
A few Simulink Blocks have been provided for the user to interface to the hardware of the
PX4. These allow for code generation only and do not provide for plant modeling behavior.
It is recommended that your control model be a Model Block in your Simulink simulation
model and then be re-used in your implementation model which would tie in these hardware
interface blocks. The library filename is called pixhawk_sllib.slx and will be available in your
Simulink Library browser under Pixhawk Target Blocks. It consists of four (4) sub-libraries:

1) ADC and Serial Port,
2) Misc Utility Blocks
3) Sensors and Actuators
4) uORB Read/Write Blocks.

To read more on each block, consult the documentation in the MATLAB help guide:

Click on the PX4 PSP then go to “Blocks”

4.6 Example Models
There are several simple “test” models available for you to make sure everything is correctly
installed and working. It is recommended to try one of these initial test models before trying a
complete flight control system model.

Example models are located here:
<Selected PX4 Firmware Directory>\examples\

These files were originally copied from:
<MATLAB Add-ons location>\PX4PSP\code\examples

These example models cover areas such as:

• GPS, ADC and Attitude estimation uORB access
• Writing commands to actuators (PWM and AUX outputs)
• Generic uORB read/write
• Serial transmit/receive
• Interacting with Mavlink & QGroundControl
• Defining PX4 parameters tunable by QGroundControl

For some of these examples, you will need to establish a serial terminal connection to the PX4
hardware with a program such as TerraTerm or PuTTY to examine stdout print statements. This
can be done by running the command:
nsh> px4_simulink_app start

If have edited the rc.txt boot script to start px4_simulink_app at boot-time, then you will need to
stop it, then re-start it with these commands (since there is no stdout console available at boot-up
time the printf statements in the code can’t output any text):

Then
nsh> px4_simulink_app stop

 px4demo_ADC_example.slx
Select the different ADC channels through the options in the block. This block was written as
a system object.

System objects are another alternate method of block authoring. The source code is written
as MATLAB class. To view the source code, a link is provided in the block description.

NOTE: This model is to be demonstrated using external mode

 px4demo_input_rc.slx
This model will test the RC transmitter block. Use the RC Transmitter to control the color and
mode of the RGB LED on the pixhawk. Channel 3 is typically the “Thrust” or the left vertical
joystick control. Channel 4 is typically the “Yaw” or the right horizontal joystick control.

 px4demo_rgbled.slx
A simple model that show how to program the RGB_LED library block. Every second the
RGB LED changes from blinking-fast blue color to “breathing” red color.

Note: enumerations for LEDs are as follows (in MATLAB) :
SL_MODE_OFF (0)
SL_MODE_ON (1)
SL_MODE_DISABLED (2)
SL_MODE_BLINK_SLOW (3)
SL_MODE_BLINK_NORMAL (4)
SL_MODE_BLINK_FAST (5)
SL_MODE_BREATHE (6)

 px4demo_tune.slx
To test various tunes, this model plays all the pre-defined tunes plus a user-custom tune
cycling every 10 seconds.

 px4demo_gps.slx
A test model has been provided to test out the GPS Block. This model will print out
information to a terminal window once a second and the RGB LED will “breathe” Green.

The output will look similar to this:

 px4demo_attitude_plant.slx
To design and simulation your flight control you will need a test-bench model. It is
recommended that you create your test bench model that will provide the stimulus and
plant/environment/feedback behavior for your flight control and use a Model (Reference)
Block for your control system model.

Here is an example of a model to simulate an attitude control system:

 px4demo_attitude_control.slx
This model contains the heart of the attitude flight control model. It should have the identical
configuration parameters as the parent model.

 px4demo_attitude_system.slx
After the flight control system has been successfully simulated, it can be used in an
“implementation” model that the user can use to generate code and deploy to the Pixhawk
PX4 hardware.

Here is the same Control Model referenced in a system model for deployment. The
RED/GREEN colors indicate the different sample rates of the model (RED = 250Hz, GREEN
= 2Hz).

Note that in Firmware v1.6.5 and beyond the vehicle_attitude uORB topic only outputs in
quaternion.

To convert to euler angles this model contains a block which can convert quaternion to euler
angles. The code is based off this:

https://github.com/PX4/Matrix/blob/471e96ff6f5f22018b782441c6a8df19d8294181/matrix/Eul
er.hpp#L132

 px4demo_Parameter_CSC_example.slx

px4demo_ParameterUpdate_CSC_example.slx

The Pixhawk Px4FMUv2 uses many parameters to store and access during various
operations. Much of these include sensor/actuator calibration data and are stored in flash
memory which is accessible by MTD via NuttX.

You can see the list of default parameters here:
https://pixhawk.org/firmware/parameters
Guide to configuring parameters:
http://dev.px4.io/advanced-configurations.html

The Pixhawk PSP allows you to access these parameters using Embedded Coder's
Custom Storage Class feature. A parameter is first defined in the MATLAB workspace with
specific parameter properties which is then accessed in the generated code.

To make use of this, use the following syntax:

Pixhawk_CSC.Parameter(CELL_ARRAY)

Where CELL_ARRAY is a MATLAB cell array composed of a value (int32 or single) and a
string of the parameter. For instance:

CAL_GYRO0_XSCALE = Pixhawk_CSC.Parameter({single(1), 'CAL_GYRO0_XSCALE'}
)

Parameters can either be int32 or single/floating precision. Please ensure you select the
correct data type and the string name matches. Note that for the model below, all
parameters have been defined in the model callback function.

NOTE: This model “px4demo_ParameterUpdate_CSC_example.slx” is to be demonstrated
using external mode

If parameters are changing and the model requires to use these newly updated
parameters, then adding this block in your model can enable such capabilities.

You can use this block to auto-populate a list of storage classes used by the model. You
can pick and choose which parameters require updating at run-time.

A version of the above model with the update block can be found here:
px4demo_ParameterUpdate_CSC_example.slx

This model is to be run without external mode. Printf statements can be viewed by running
px4_simulink_app.

 px4demo_write_uorb_example.slx

This model demonstrates how one can write data to uORB topics. The uORB write block
writes to the struct elements 'lat','lon' and 'timestamp' to the GPS topic. The GPS block then
outputs the same value we are writing to by first advertising the GPS topic and then
publishing data. You can define whatever topic to write to and its individual struct elements

1) Define LAT, LON and TIME in the MATLAB work-space with assigned values. Ensure they
are matching data types to what the block expects.
2) Run in external mode
3) Tune values LAT, LON and TIME and watch the values change in the display from the
output of the GPS block

The “uORB Write Advance” block is used which allows you to write to the entire data
structure of a uORB topic. Use the UI by double clicking on the block and select which uORB
topic struct element to write to. Note that data type and dimenions have been resolved.The
older uORB Write block has a limited set but is still accessible in the Simulink PX4 Library

NOTE: This model is to be demonstrated using external mode

 Serial Communication

Two models have been provided to demonstrate how to setup serial communication
px4demo_HostSerial_TxRx.slx

This model does not undergo code generation, it resides on the host PC and is responsible
for sending/receiving data to the Pixhawk Px4FMU over serial. The scopes will show
accelerometer and gyro readings. A loopback display block is used to show the value that we
send to the Pixhawk is sent back.

px4demo_Serial_TxRx.slx

This model is the one that will be deployed the Pixhawk FMU. It will fetch data from a uORB
topic and send it off over serial (ttyS6). Loopback data is received and sent back into the
serial send block.

4.7 QGroundControl Demos – Parameter Tuning and Messages

Included within this are demos which allow for parameter tuning and sending debug messages
over QGroundControl (QGC)

px4demo_QGC_tune.slx
<Selected PX4 Firmware Directory>\examples\qgc_tune_parameter\

This model contains defines two parameters, “SL_MSG” and “SL_TEST”. In Simulink, they are
assigned as custom storage classes. To adhere to PX4’s firmware parameter definition scheme,
we also need to include an additional source file px4_simulink_app_params.c.

/**
 * Sample Simulink Param
 *
 * <longer description, can be multi-line>
 *
 * @unit number
 * @min 0
 * @max 100
 * @decimal 0
 * @increment 1
 * @reboot_required false
 * @group simulink
 */
PARAM_DEFINE_INT32(SL_MSG, 10);

As for the model itself, the ‘ParamUpdate’ block was used to ensure parameters are updated
when QGC tunes these parameters over Mavlink:

We then add this source file to the custom code panel:

Next, to deploy this model on to the PX4 target:

1) Before compiling the model, you may need to delete parameters.xml within your build
folder. This is to force re-generation of this XML file which will contain newly defined
parameters from the model.
<Firmware Location>\Firmware\build_<fimware_variant>\parameters.xml

Where <firmware_variant> could be px4fmu-v3_default or px4fmu-v2_default, etc

2) Build the model

Confirm that after the build, parameters.xml within
“<Firmware Location>\Firmware\build_<fimware_variant>\”
Actually contains SL_TEST and SL_MSG like so:

3) Setup your rc.txt file to enable mavlink. For reference, here is the line of code in the rc.txt
that does this

mavlink start -d /dev/ttyACM0 -b 57600

You will want to make sure that no other application is using the same serial port.

4) Program the board

5) Start up QGC – connection should be established in a few seconds. This has been tested
on QGC v3.2.4

6) If your px4_simulink_app is not running you can start it up by going to the Mavlink
console

7) Go back to the parameters. Click on tools->refresh

8) To trigger refresh of the parameters you first select a different parameter group other
than Default and then clicked on Default again. SL_MSG and SL_TEST should now show
up

The PX4 application will begin printing values to the screen. You should be able to tune values
within here and watch the values change accordingly.

px4demo_QGC_tune.slx

This example model uses rc-controller input and appends it to a message defined within the
“mavlink_text_msg” block. This string is then passed on to a uORB write block which writes to the
“mavlink_log” topic. This topic is then viewable within QGroundControl as shown below

Like the previous example, MAVLINK must be enabled to establish this communication. You can
experiment with trying different “severity” levels to match the expected messaging behavior that’s
specific to QGC.

Viewing published PWM data in QGroundControl

A new addition was added to the PX4 PWM write block.

By enabling the “Publish Outputs” this block will also publish data to the uORB topic
“actuator_outputs”.

5 Building your own custom Simulink Block

There are several reasons you may want to consider building your own Simulink block. The
most common reason is the need to interface generated code with custom hand-code. This
could be to interface with driver code which talks to various sensors/actuators or to send data
over to another interface. Whatever the reason may be, MATLAB and Simulink offer many
ways to accomplish this.

 S-Function Approach

All the blocks in this Pilot Support Package were created by writing S-functions with TLC and
System Objects.

There are many ways to create S-Functions and the accompanying TLC code.

• Write it by hand along with the TLC from scratch
• Use S-function builder
• Use Legacy Code Tool to interface existing hand-written code.
• Use a combination of all the above. S-function builder or Legacy Code Tool can be used

to create a starting point for you to start modifying the S-function MEX source file as well
as the TLC.

We have provided an example in this version of the PSP (C-MEX and TLC) for users to learn
from. Please See:

<PSP install>\px4\examples\BlockCreation\

Apply the MEX command on the sfun_px4_battery_example.cpp block to generate a valid MEX
file for the S-function. Use this block as an example as to how to create blocks with S-Functions.

 For more documentation on S-Functions, please see:

http://www.mathworks.com/help/releases/R2016a/rtw/block-authoring.html

 MATLAB Function blocks and System Objects

The logging block was written using a MATLAB Function block. MATLAB Coder syntax is used
to describe the interface to hand-code. Please examine the contents of this block for more
information on how this was accomplished

Another method that exists is using System Objects. These types of blocks make use of
MATLAB Coder’s capability of transforming MATLAB Code into C-code. System Objects are
written using an object-oriented approach. Please see the ADC and Serial blocks as examples
of how to write such blocks.

Click on the ‘Source code’ hyperlink to open up the MATLAB System Object code for these
types of blocks.

For more information on MATLAB Coder and System Objects, please also see:

https://www.mathworks.com/help/simulink/ug/creating-an-example-model-that-uses-a-matlab-
function-block.html

https://www.mathworks.com/help/simulink/slref/coder.ceval.html

https://www.mathworks.com/help/simulink/system-objects.html

6 Limitations
The supplied Simulink blocks do not support any simulation behavior. These are merely
there to provide code generation to interface the control system to the actual hardware
drivers necessary in the firmware. It is advised that you use Model Referencing to
separate your control system so that you can re-use the model in your simulation as well
as the implementation model (used for code generation).

Currently, the optimization option “Inline Parameters” must be turned on. This
eliminates the use of global data being created which has shown to cause compilation
errors due to limited global memory space.

 Support for HIL / Mavlink

We currently do not support interactions with HIL or Mavlink with the px4_simulink_app.
This is something we wish to investigate in the future and will require significant changes /
updates to the way we generate code for this application. Additional code will need to be
added to each of the blocks to allow routing of signals when in a HIL environment. If you
have suggestions or contributions to help in this area, please feel free to reach out to
MathWorks Pilot Engineering.

 Supporting C++ uORB Message Data Structures

The current uORB read block is only able to convert uORB messages into Simulink bus
objects if the topic is not treated as a C++ object. Several messages are treated as a C++
object where the data structure will not be compatible in C. At the moment, we only
generate C code for px4_simulink_app. This means that thing such as memcopies or

memory layout cannot be assumed to be contagious. Here’s an example of a uORB topic
that uses C++ notation.

Message File: battery_status.msg

uint64 timestamp # microseconds since system boot, needed to integrate
float32 voltage_v # Battery voltage in volts, 0 if unknown
float32 voltage_filtered_v # Battery voltage in volts, filtered, 0 if unknown
float32 current_a # Battery current in amperes, -1 if unknown
float32 current_filtered_a # Battery current in amperes, filtered, 0 if unknown
float32 discharged_mah # Discharged amount in mAh, -1 if unknown
float32 remaining # From 1 to 0, -1 if unknown
int32 cell_count # Number of cells
bool connected # Wether or not a battery is connected
#bool is_powering_off # Power off event imminent indication, false if unknown

uint8 BATTERY_WARNING_NONE = 0 # no battery low voltage warning active
uint8 BATTERY_WARNING_LOW = 1 # warning of low voltage
uint8 BATTERY_WARNING_CRITICAL = 2 # alerting of critical voltage

uint8 warning # current battery warning

The header file which gets generated looks something like this:
C:\px4\Firmware\build_px4fmu-v2_default\src\modules\uORB\topics\battery_status.h

#ifdef __cplusplus
struct __EXPORT battery_status_s {
#else
struct battery_status_s {
#endif
 uint64_t timestamp;
 float voltage_v;
 float voltage_filtered_v;
 float current_a;
 float current_filtered_a;
 float discharged_mah;
 float remaining;
 int32_t cell_count;
 bool connected;
 uint8_t warning;
#ifdef __cplusplus
 static const uint8_t BATTERY_WARNING_NONE = 0;
 static const uint8_t BATTERY_WARNING_LOW = 1;
 static const uint8_t BATTERY_WARNING_CRITICAL = 2;

#endif
};

The battery_status uORB topic was written with non-C struct notation:

BATTERY_WARNING_NONE,
BATTERY_WARNING_LOW,
BATTERY_WARNING_CRITICAL.

Because the PixhawkPSP generates C code we cannot instantiate this struct and copy
data elements such as BATTERY_WARNING_NONE over like a normal C struct without
getting a compiler error. The “Battery_Status” uORB data structure must be treated as a
‘singleton’ or global since it contains global data.

We have provided a block which is like the uORB read block in the current library but
supports the ability to access struct elements from a C++ uORB object, however, the
ability to actually read the global elements is not supported. Please look at the example
inside: \px4\SampleSFcn

Example:

However, attempting to do this:

Will result in compiler error. Therefore, the official shipped version of the uORB read block
that uses bus objects will reject these types of data structures completely while this version
of the block will still allow you to use any data structure.

If you wish to support the C++ global member variables such as the one in the example
above, you will probably need to write your own block that does a copy of data from a C++
struct into local C variables. This function/code could live inside a C++ source file and gets
used only if the topic will contain C++ data-structures. Consult the previous chapter on
block creation for more tips on how to do this as well. This may be addressed in a future
version of the PSP. Alternatively, you can try editing the .msg file and commenting out the
“constants” used. This will work only if you aren’t running other software that may rely on
these to be defined as part of the topic structure (e.g. commander).

 Updating to a new version of Pixhawk PSP
There may be times when a new version of the Pixhawk PSP will need to be installed.
This could be based on newer versions of Simulink being released, bug fixes, new blocks
or enhancements of both the base product and the PSP.

If you run into any issues with the use of this PSP please contact your MathWorks sales
representative or Pilot Engineering group directly. Do not go through technical support
for issues with this PSP. Do go through technical support for issues related to
MATLAB/Simulink outside the scope of this PSP.

